Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.513
Filtrar
1.
PLoS One ; 19(5): e0303305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743648

RESUMEN

The study aimed to assess the level of potentially toxic elements (As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni) and associated health implications through commonly consumed rice cultivars of Bangladesh available in Capital city, Dhaka. The range of As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni in rice grains were 0.04-0.35, 0.01-0.15, 0.01-1.18, 10.74-34.35, 1.98-13.42, 0.18-1.43, 2.51-22.08, and 0.21-5.96 mg/kg fresh weight (FW), respectively. The principal component analysis (PCA) identified substantial anthropogenic activities to be responsible for these elements in rice grains. The estimated daily intake (EDI) of the elements was below the maximum tolerable daily intake (MTDI) level. The hazard index (HI) was above the threshold level, stating non-carcinogenic health hazards from consuming these rice cultivars. The mean target cancer risk (TCR) of As and Pb exceeded the USEPA acceptable level (10-6), revealing carcinogenic health risks from the rice grains.


Asunto(s)
Oryza , Bangladesh/epidemiología , Oryza/química , Humanos , Contaminación de Alimentos/análisis , Carcinógenos/análisis , Carcinógenos/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Análisis de Componente Principal
2.
J Hazard Mater ; 471: 134398, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677124

RESUMEN

Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.3 % and 9.7 %, respectively, and significantly increased the humification index (P < 0.05) compared to the CK (addition of tap water). The passivation of HMs (Zn, Cu, As, Pb, and Cr) increased by 12.17-23.36 % and 9.74-15.95 % for RH-SS and SS, respectively, compared with that for CK. RH-SS and SS reduced the HMRG abundance in composted products by 22.29 % and 15.07 %, respectively. The partial least squares path modeling results showed that SS and RH-SS promoted compost humification while simultaneously altering the bacterial community and reducing the bioavailability of metals and host abundance of HMRGs, which has a direct inhibitory effect on the production and distribution of HMRGs. These findings support a new strategy to reduce the environmental risk of HMs and HMRGs in livestock manure utilization.


Asunto(s)
Pollos , Compostaje , Estiércol , Metales Pesados , Aguas del Alcantarillado , Animales , Metales Pesados/toxicidad , Sustancias Húmicas/análisis , Carbono/química , Contaminantes del Suelo/toxicidad , Oryza/metabolismo
3.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599159

RESUMEN

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Asunto(s)
Saltamontes , Metales Pesados , Contaminantes Químicos del Agua , Animales , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Saltamontes/efectos de los fármacos , Saltamontes/anatomía & histología , Monitoreo del Ambiente/métodos , Minería , China , Adaptación Fisiológica/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ríos/química
4.
Environ Geochem Health ; 46(5): 149, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578493

RESUMEN

There is limited evidence linking exposure to heavy metals, especially mixed metals, to stress urinary incontinence (SUI). This study aimed to explore the relationship between multiple metals exposure and SUI in women. The data were derived from the National Health and Nutrition Examination Survey (NHANES), 2007-2020. In the study, a total of 13 metals were analyzed in blood and urine. In addition, 5155 adult women were included, of whom 2123 (41.2%) suffered from SUI. The logistic regression model and restricted cubic spline (RCS) were conducted to assess the association of single metal exposure with SUI risk. The Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) were used to estimate the combined effect of multiple metals exposure on SUI. First, we observed that blood Pb, Hg and urinary Pb, Cd were positively related to SUI risk, whereas urinary W was inversely related by multivariate logistic regression (all p-FDR < 0.05). Additionally, a significant non-linear relationship between blood Hg and SUI risk was observed by RCS analysis. In the co-exposure models, WQS model showed that exposure to metal mixtures in blood [OR (95%CI) = 1.18 (1.06, 1.31)] and urine [OR (95%CI) = 1.18 (1.03, 1.34)] was positively associated with SUI risk, which was consistent with the results of BKMR model. A potential interaction was identified between Hg and Cd in urine. Hg and Cd were the main contributors to the combined effects. In summary, our study indicates that exposure to heavy metal mixtures may increase SUI risk in women.


Asunto(s)
Mercurio , Metales Pesados , Incontinencia Urinaria de Esfuerzo , Adulto , Femenino , Humanos , Encuestas Nutricionales , Teorema de Bayes , Cadmio/toxicidad , Plomo , Incontinencia Urinaria de Esfuerzo/inducido químicamente , Incontinencia Urinaria de Esfuerzo/epidemiología , Metales Pesados/toxicidad
5.
Molecules ; 29(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611844

RESUMEN

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Asunto(s)
Mercurio , Metales Pesados , Ligandos , Sales (Química) , Metales Pesados/toxicidad , Mercurio/toxicidad , Iones , Antibacterianos/farmacología , Alquenos , Polímeros , Piridinas
6.
Circ Res ; 134(9): 1160-1178, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662861

RESUMEN

Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.


Asunto(s)
Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Metales Pesados , Humanos , Metales Pesados/toxicidad , Metales Pesados/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Animales , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes
7.
PLoS One ; 19(4): e0288190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625896

RESUMEN

BACKGROUND: Exposure to heavy metals (cadmium, mercury, and lead) has been linked with adverse health outcomes, especially their nephrotoxic effects at high levels of exposure. We conducted a replication study to examine the association of low-level heavy metal exposure and chronic kidney disease (CKD) using a larger NHANES data set compared to previous studies. METHODS: The large cross-sectional study comprised 5,175 CKD cases out of 55677 participants aged 20-85 years from the 1999-2020 National Health and Nutrition Examination Survey [NHANES]. Logistic regression analysis was applied to estimate the associations between CKD and heavy metals [Cd, Pb, Hg] measured as categorical variables after adjusting with age, race, gender, socioeconomic status, hypertension, diabetes mellitus and blood cotinine level as smoking status. RESULTS: Compared to the lowest quartile of blood Cd, exposures to the 2nd, 3rd and 4th quartiles of blood Cd were statistically significantly associated with higher odds of CKD after adjustment for blood Pb and Hg, with OR = 1.79, [95% CI; 1.55-2.07, p<0.0001], OR = 2.17, [95% CI; 1.88-2.51, p<0.0001] and OR = 1.52, [95% CI; 1.30-1.76, p<0.0001] respectively. The 2nd, 3rd and 4th quartiles of blood Cd remained statistically significantly associated with higher odds of CKD after adjustment for blood cotinine level, with OR = 2.06, [95% CI; 1.80-2.36, p<0.0001], OR = 3.18, [95% CI; 2.79-3.63, p<0.0001] and OR = 5.54, [95% CI; 4.82-6.37, p<0.0001] respectively. Exposure to blood Pb was statistically significantly associated with higher odds of CKD in the 2nd, 3rd and 4th quartile groups, after adjustment for all co-variates (ag, gender, race, socio-economic status, hypertension, diabetes mellitus, blood cadmium, mercury, and cotinine levels) in all the four models. Blood Hg level was statistically significantly associated with lower odds of CKD in the 2nd quartile group in model 2, 3rd quartile group in model 1, 2 and 3, and the 4th quartile group in all the four models. CONCLUSIONS: Our findings showed that low blood levels of Cd and Pb were associated with higher odds of CKD while low blood levels of Hg were associated with lower odds of CKD in the US adult population. However, temporal association cannot be determined as it is a cross sectional study.


Asunto(s)
Diabetes Mellitus , Hipertensión , Mercurio , Metales Pesados , Insuficiencia Renal Crónica , Adulto , Humanos , Estudios Transversales , Cadmio/toxicidad , Encuestas Nutricionales , Cotinina , Plomo , Metales Pesados/toxicidad , Mercurio/toxicidad , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Hipertensión/epidemiología
8.
J Environ Sci (China) ; 143: 60-70, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644024

RESUMEN

Abandoned chemical smelting sites containing toxic substances can seriously threaten and pose a risk to the surrounding ecological environment. Soil samples were collected from different depths (0 to 13 m) and analyzed for metal(loid)s content and fractionation, as well as microbial activities. The potential ecological risk indices for the different soil depths (ordered from high to low) were: 1 m (D-1) > surface (S-0) > 5 m (D-5) > 13 m (D-13) > 9 m (D-9), ranging between 1840.65-13,089.62, and representing extremely high environmental risks, of which Cd (and probably not arsenic) contributed to the highest environmental risk. A modified combined pollution risk index (MCR) combining total content and mobile proportion of metal(loid)s, and relative toxicities, was used to evaluate the degree of contamination and potential environmental risks. For the near-surface samples (S-0 and D-1 layers), the MCR considered that As, Cd, Pb, Sb, and Zn achieved high and alarming degrees of contamination, whereas Fe, Mn, and Ti were negligible or low to moderate pollution degrees. Combined microcalorimetry and enzymatic activity measurements of contaminated soil samples were used to assess the microbial metabolic activity characteristics. Correlation analysis elucidated the relationship between metal(loid)s exchangeable fraction or content and microbial activity characteristics (p < 0.05). The microbial metabolic activity in the D-1 layer was low presumably due to heavy metal stress. Enzyme activity indicators and microcalorimetric growth rate (k) measurements were considered sensitive indicators to reflect the soil microbial activities in abandoned chemical smelting sites.


Asunto(s)
Monitoreo del Ambiente , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Suelo/química , Medición de Riesgo , Metales Pesados/análisis , Metales Pesados/toxicidad , Metalurgia , Metales/toxicidad , Metales/análisis
9.
Sci Total Environ ; 927: 172303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599398

RESUMEN

BACKGROUND: Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS: Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS: The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS: The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Niño , Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales Pesados/toxicidad , Enfermedades del Sistema Inmune/inducido químicamente , Enfermedades del Sistema Inmune/epidemiología , Contaminantes Ambientales , Arsénico/toxicidad , Preescolar , Adolescente , Metales/toxicidad
10.
Sci Rep ; 14(1): 8366, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600294

RESUMEN

Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Cadmio/análisis , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Plomo/análisis , Mercurio/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Ríos , Tailandia , Contaminantes Químicos del Agua/análisis
11.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598029

RESUMEN

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Asunto(s)
Antibacterianos , Metales Pesados , Animales , Humanos , Antibacterianos/farmacología , Cobre , Metales Pesados/toxicidad , Ampicilina , Cloranfenicol
12.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568247

RESUMEN

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Asunto(s)
Interacciones de Hierba-Droga , Metales Pesados , Metales Pesados/toxicidad , Procesamiento Proteico-Postraduccional , Suelo
13.
World J Microbiol Biotechnol ; 40(6): 165, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630187

RESUMEN

Bacterial reduction of hexavalent chromium (VI) to chromium (III) is a sustainable bioremediation approach. However, the Cr(VI) containing wastewaters are often characterized with complex conditions such as high salt, alkaline pH and heavy metals which severely impact the growth and Cr(VI) reduction potential of microorganisms. This study investigated Cr(VI) reduction under complex haloalkaline conditions by an Alteromonas sp. ORB2 isolated from aerobic granular sludge cultivated from the seawater-microbiome. Optimum growth of Alteromonas sp. ORB2 was observed under haloalkaline conditions at 3.5-9.5% NaCl and pH 7-11. The bacterial growth in normal culture conditions (3.5% NaCl; pH 7.6) was not inhibited by 100 mg/l Cr(VI)/ As(V)/ Pb(II), 50 mg/l Cu(II) or 5 mg/l Cd(II). Near complete reduction of 100 mg/l Cr(VI) was achieved within 24 h at 3.5-7.5% NaCl and pH 8-11. Cr(VI) reduction by Alteromonas sp. ORB2 was not inhibited by 100 mg/L As(V), 100 mg/L Pb(II), 50 mg/L Cu(II) or 5 mg/L Cd(II). The bacterial cells grew in the medium with 100 mg/l Cr(VI) contained lower esterase activity and higher reactive oxygen species levels indicating toxicity and oxidative stress. In-spite of toxicity, the cells grew and reduced 100 mg/l Cr(VI) completely within 24 h. Cr(VI) removal from the medium was driven by bacterial reduction to Cr(III) which remained in the complex medium. Cr(VI) reduction was strongly linked to aerobic growth of Alteromonas sp. The Cr(VI) reductase activity of cytosolic protein fraction was pronounced by supplementing with NADPH in vitro assays. This study demonstrated a growth-dependent aerobic Cr(VI) reduction by Alteromonas sp. ORB2 under complex haloalkaline conditions akin to wastewaters.


Asunto(s)
Alteromonas , Cromo , Metales Pesados , Cloruro de Sodio/farmacología , Cadmio , Plomo/toxicidad , Aguas Residuales , Metales Pesados/toxicidad
14.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573560

RESUMEN

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente/métodos , Cadmio , Plomo , Metales Pesados/toxicidad , Agua de Mar , Medición de Riesgo , Centrales Eléctricas , China , Carbón Mineral , Suelo , Contaminantes del Suelo/análisis
15.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580805

RESUMEN

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Asunto(s)
Arsénico , Metales Pesados , Selenio , Humanos , Plomo/toxicidad , Arsénico/toxicidad , Cadmio/toxicidad , Análisis de Mediación , Mineralocorticoides , Intoxicación por Metales Pesados , Zinc , Hierro , Iones , China , Metales Pesados/toxicidad
16.
Ecotoxicol Environ Saf ; 277: 116384, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657451

RESUMEN

It's of great challenge to address for heavy metal-contaminated soil. Once the farmland is contaminated with heavy metals, the microbial ecology of the plant rhizosphere will change, which in turn impacts crop productivity and quality. However, few studies have explored the effects of heavy metals on plant rhizosphere microbes in farmland and the role that plant cultivation plays in such a phytoremediation practice. In this study, the impacts of comfrey (Symphytum officinale L.) cultivation and the stresses of cadmium/zinc (Cd/Zn) on rhizosphere soil microflora were examined. Microbial DNA was collected from soils to evaluate the prevalence of bacteria and fungi communities in rhizosphere soils. High-throughput 16 S rRNA sequencing was used to determine the diversity of the bacterial and fungal communities. The results showed that growing comfrey on polluted soils reduced the levels of Cd and Zn from the vertical profile. Both the comfrey growth and Cd/Zn stresses affected the community of rhizosphere microorganisms (bacteria or fungi). Additionally, the analysis of PCoA and NMDS indicated that the cultivation of comfrey significantly changed the bacterial composition and structure of unpolluted soil. Comfrey cultivation in polluted and unpolluted soils did not result in much variance in the fungi's species composition, but the fungal compositions of the two-type soils were noticeably different. This work provided a better understanding of the impacts of Cd/Zn stresses and comfrey cultivation on rhizosphere microbial community, as well as new insight into phytoremediation of heavy metal-contaminated soils.


Asunto(s)
Bacterias , Biodegradación Ambiental , Cadmio , Hongos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Zinc , Cadmio/toxicidad , Zinc/toxicidad , Contaminantes del Suelo/toxicidad , Hongos/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Suelo/química , Microbiota/efectos de los fármacos , Metales Pesados/toxicidad , Estrés Fisiológico
17.
Ecotoxicol Environ Saf ; 277: 116361, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663189

RESUMEN

Soil heavy metal contamination has become a global environmental issue, which threaten soil quality, food security and human health. Symphytum officinale L. have exhibited high tolerance and restoration capacity to heavy metals (HMs) stress. However, little is known about the mechanisms of HMs in S. officinale. In this study, transcriptomic and physiological changes of S. officinale response to different HMs (Pb, Cd and Zn) were analyzed and investigated the key genes and pathways involved in HMs uptake patterns. The results showed that phenotypic effects are not significant, and antioxidant enzyme activities were all upregulated. Transcriptome analysis indicated that 1247 differential genes were up-regulated, and 1963 differential genes were down-regulated under Cd stress, while 3752 differential genes were up-regulated, and 7197 differential genes were down-regulated under Pb stress; and 527 differential genes were up-regulated; and 722 differential genes were down-regulated under Zn stress. Based on their expression, we preliminarily speculate that different HMs resistance of S. officinale may be regulated by the differential expression of key genes. These results provide a theoretical basis for determining the exact expression of genes in plants under different heavy metal stress, the processes involved molecular pathways, and how they can be efficiently utilized to improve plant tolerance to toxic metals and improve phytoremediation efficiency.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Transcriptoma , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Transcriptoma/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Plomo/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cadmio/toxicidad , Perfilación de la Expresión Génica , Biodegradación Ambiental , Zinc/toxicidad
18.
Food Chem Toxicol ; 188: 114685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663763

RESUMEN

The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.


Asunto(s)
Metales Pesados , Retina , Humanos , Retina/efectos de los fármacos , Retina/patología , Retina/metabolismo , Metales Pesados/toxicidad , Animales , Estrés Oxidativo/efectos de los fármacos , Degeneración Macular/inducido químicamente
19.
J Hazard Mater ; 471: 134295, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631253

RESUMEN

There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.


Asunto(s)
Cobalto , Níquel , Microbiología del Suelo , Contaminantes del Suelo , Níquel/toxicidad , Níquel/química , Cobalto/química , Cobalto/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/toxicidad , Metales Pesados/química , Disponibilidad Biológica , Minería , Germinación/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fuerza Compresiva , Residuos Industriales
20.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493978

RESUMEN

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Asunto(s)
Arsénico , Camellia sinensis , Metales Pesados , Humanos , Estaciones del Año , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Arsénico/análisis , Minerales , Cromo/análisis , Níquel/análisis , Manganeso/análisis , Aluminio/análisis , Medición de Riesgo , Zinc/análisis , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA